Adaptation Studies of Engineering Design Process Cycle to Robotics Coding, STEM, and Nature of Science Activities in Science Education

Nevin Kozcu Cakir
Mugla Sitki Kocman University, Turkey

Suna Karlidag
Mugla Sitki Kocman University, Turkey

To cite this article:

The International Journal of Technology in Education (IJTE) is a peer-reviewed scholarly online journal. This article may be used for research, teaching, and private study purposes. Authors alone are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of the research material. All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations regarding the submitted work.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Adaptation Studies of Engineering Design Process Cycle to Robotics Coding, STEM, and Nature of Science Activities in Science Education

Nevin Kozcu Cakir, Suna Karlidag

Abstract
The purpose of the current study is to examine the effect of adapting the engineering design process to robotic coding, STEM, and the nature of science applications on teachers’ self-efficacy towards engineering education and attitudes towards robotic coding. A weak experimental design with a single-group pre-test and post-test, one of the quantitative research methods, was used in the study. The sample of the study consists of 20 science teachers from all over Turkey who meet the application requirements within the scope of the project 2237 supported by TÜBİTAK and working in schools affiliated to the Ministry of National Education. The sample was determined using the purposive sampling method. In this study, teachers were given theoretical and practical training on engineering design process-based STEM, robotic coding, and the nature of science for a total of 36 hours over one week. Quantitative data were analyzed using dependent groups t-test and correlation analysis in the SPSS 23 program. They evaluated their ability to apply these activities in their classes. As a result of the analysis of the quantitative data of the study, it was observed that their self-efficacy towards engineering education and attitudes towards the use of robotic coding in the class showed a positive increase.

Introduction
Science education enables students to approach events in their daily lives with a scientific perspective, learn by doing, solve problems they encounter using 21st-century skills, and as a result, develop 21st-century skills. The most fundamental feature that distinguishes science from other disciplines is its emphasis on experimentation, observation, and exploration (Ministry Education (MEB), 2018). To help students grow up to be literate individuals and be equipped with knowledge and skills, teachers should create rich learning environments in their classrooms. Considering the rapid technological change in the developing and changing world, it has become important to create rich learning environments and use them in classes so that students of this century can catch up with developments. The concept of Industry 4.0 requires to make investments not only in innovative technologies but also in education to train individuals with 21st-century skills. Thus, it is suggested that engineering applications should be incorporated into K-12 science curriculums in innovative teaching programs. In this regard, engineering serves as a bridge for students to the meaningful learning of the content of math and science subjects (Moore, Glancy, Tank, Kersten, Smith, Stohlmann, 2014), helps to develop analytical skills.
encountered in education through Science, Technology, Engineering and Mathematics (STEM) and underscores the importance of an interdisciplinary holistic approach for training individuals needed in the 21st century (National Academy of Engineering & National Research Council (NAE & NRC), 2009). Therefore, many countries, including the United States, have clearly specified and implemented engineering and engineering design standards in their educational programs (Next Generation Science Standards (NGSS), 2013).

In Turkey, a new science curriculum was put into practice in 2018 (MEB, 2018). In this curriculum, there are examples of innovative practices including the engineering design process, the nature of science, STEM, and robotic coding applications. The importance of the constructivist approach in education is emphasized in the 2018 Science Curriculum. The constructivist learning approach was created by utilizing Piaget’s and Vygotsky’s learning theories. It is defined as an active process in which the student restructures newly learned information on the basis of their past experiences and knowledge. In this context, learning objectives cannot be achieved with the information presented by teachers alone.

Students should be encouraged to construct the newly-learned information by processing it with their existing personal knowledge and perceptions (Yager, 1991). When the constructivist learning approach is used, rich learning environments can be created where students are active in the process, receive help from their peers and construct the knowledge. In this way, it is thought that students will be able to understand difficult abstract concepts and learn effectively, permanently and meaningfully.

The engineering design skills were incorporated into the 2018 Science Curriculum to integrate STEM disciplines to encourage students to produce solutions to engineering design problems (Wendell, 2008). For STEM, it is sufficient to address two of the disciplines of science, technology, engineering, and mathematics together. In addition, while prototyping, product development, marketing and entrepreneurship skills are not a priority in STEM, developing engineering design skills is a priority. The engineering design cycle process is proposed for the development of engineering design skills. Barnett, Connolly, Jarvin, Marulcu, Rogers, Wendell & Wright (2008) and Wendell, Connolly, Wright, Jarvin, Rogers, Barnett & Marulcu (2010) developed a five-stage model that shows that engineering design process applications for elementary school students progress in a cycle.

Figure 1 shows the steps of the engineering design process recommended by Wendell and colleagues (2010) for the elementary school level. The process covers all the tasks performed by an engineer in the design phase. The process consists of five steps starting with problem identification and ending with product presentation. Although the process is not always as simple as this for engineers, it has been made suitable for students at the elementary school level (Topalaslan, 2018).

Hynes, Portsmore, Dare, Milto, Rogers, Hammer & Carberry (2011) detailed the 5-stage engineering design process cycle for older groups and modeled it as a 9-stage cycle. When Figure 2 is examined, it is seen that in the loop at the center of the figure, the ways an engineer proceeds in the design creation process are explained, and in the loop around it, how to implement activities within the framework of the engineering design process while teaching science lessons throughout a unit is explained. In the model shown in Figure 2, the engineering design
The process starts with defining the problem and ends with reaching a decision. The engineering design process is not a cycle that moves in a single direction.

Figure 2. Science Education Cycle that is structured around the Steps of the Engineering Design Cycle (Hynes et. al., 2011)
When we look at the 9-stage engineering and design process cycle shown in Figure 2, it is seen that the student identifies the problem by starting from a need in daily life. Criteria that will lead to the solution of the problem and constraints that will hinder the solution of the problem are determined. In the stage of developing possible solutions, the student develops multiple paths to solution of the problem by using research-inquiry skills. In the stage of making the prototype, the student prepares a prototype for the design he/she has thought of. In the stage of testing the prototype, the student checks whether the design created solves the problem. If the prototype does not solve the problem, the previous steps are repeated. If the prototype solves the problem, the student presents the prototype he/she has made to his/her classmates in the classroom by using communication, entrepreneurship and marketing skills. After this stage, the design is finalized. All these stages support the development of 21st-century skills of students (creative thinking, problem solving, innovative thinking, dreaming, analytical thinking, decision making, learning by doing, critical thinking, scientific inquiry and scientific process skills, taking responsibility, teamwork, communication, entrepreneurship, career selection, etc.) in the engineering design process (Arik Erdin, 2021; Asal, 2020; Ayar & Ozalp, 2020; Bakirci & Kaplan, 2021; Baran, Canbazoglu-Bilici & Mesutoglu, 2015; Bozkurt, 2014; Cavas, Bulut, Holbrook & Rannikmae, 2013; Daugherty, 2012; Dogan, Savran-Gencer & Bilen, 2017; Erkan, 2014; Erkan & Sahin, 2015; Gunes-Koc & Kayacan, 2018; Hacıoğlu, Yamak & Kavak, 2016; Karakaya & Yilmaz, 2021; Kızılkus Bulut, 2019; Kiyici, Canbazoglu-Bilici, Yamak & Kavak, 2022; Kupeli, 2021; Mesutoglu, 2017; Musaoglu, 2020; Oğuz-Unver & Okulu, 2022; Ozer & Canbazoglu-Bilici, 2021; Sari & Yazıcı, 2019; Sarigüel & Cinar, 2021; Surmeli, Yıldırım, Sevgi & Gocuk, 2018; Tuhtakaya, 2019; Uzel, 2019; Uzel & Canbazoglu-Bilici, 2022; Yurttas, 2021).

Developing knowledge and skills related to engineering applications are directly linked to teachers' competence in their fields. In this respect, ensuring the professional development of teachers and the development of their pedagogical knowledge is crucial. Steps are being taken both nationally and internationally for the professional development for teachers and to integrate engineering into classrooms through in-service training. In Turkey, the professional development of teachers is supported with the in-service training programs offered by the Ministry of National Education and through the projects supported by the European Union and TÜBİTAK. Webb (2015) emphasized the need for teachers to develop engineering content knowledge and pedagogical content knowledge (PCK) in their professional development in engineering education. In the study conducted by Sargianis et al. (2012), it was found that teachers feel unprepared to teach engineering applications. In-service training provided to teachers was determined to have a positive impact on their professional knowledge (Duncan et al., 2011; Mesutoglu and Baran, 2021; Yoon et al., 2018). In addition, Webb (2015) noted that teachers' self-efficacy perceptions for teaching engineering are weak due to the lack of content knowledge and pedagogical content knowledge in engineering instruction.

Self-efficacy belief refers to the belief of individuals in how well they can perform the actions necessary to cope with the situations they encounter (Bandura, 1977). It is important for students to have high self-efficacy for them to participate in any process, to be productive and to be successful. For students to be able to be effectively involved in the engineering design process, they need to have self-efficacy in the field of engineering (Hacıoğlu, Yamak & Kavak, 2016; Kızılkus-Bulut, 2019; Meral, Altun-Yalcın, Cakır & Samur, 2022). Studies in the
literature show that students who have high self-efficacy are more successful in managing the learning process (Bolat, Korkmaz & Karamustafaoglu, 2021; Erdemir-Yılmaz, 2021; Kasalak, 2017; Kızılkus-Bulut, 2019; Yıldız & Seferoğlu, 2021). In science education, the engineering design process can help students develop their self-efficacy (Ercan, 2014; Erdemir-Yılmaz, 2021; Hacıoglu et al., 2016; Kızılkus-Bulut, 2019; Sari & Yazıcı, 2019; Surmeli et al., 2018). As Boriack (2013) stated, teachers’ self-efficacy beliefs appear as a factor directly affecting classroom practices.

In the relevant literature, there is a limited amount of research on teachers’ self-efficacy beliefs in engineering instruction (Vessel, 2011; Yoon et al., 2012; Webb, 2015). Therefore, it is thought that teachers who will implement the engineering design process in their classes should have the required knowledge and skills. Therefore, it is recommended that teachers participate in pre-service training on engineering design-based applications (Bozkurt, 2014; Capobianco, 2011; Capobianco, 2013; Cujsk, Keulen & Jochems, 2009; Felix, 2010; Hacıoglu et al., 2016; Marulcu & Sungur, 2012; Yasar, Baker, Robinson-Kurupus, & Roberts, 2006). In light of all this information, the importance of the engineering design process in science education is understood. The engineering design process can be used on its own or in cooperation with other disciplines. Applications such as the nature of science, STEM and robotic coding can be addressed under the engineering design process. The nature of science, which is the first of these innovative applications, includes values specific to scientific knowledge and the development of scientific knowledge (Abd-El-Khalick & Lederman, 2000; Lederman & Zeidler, 1987). In the science curriculum put into effect by the Ministry of National Education in 2018, the understanding of the nature of science is addressed in the special objectives of the curriculum such as helping to understand how scientific knowledge is created by scientists, which stages should be followed in the creation of this knowledge and how it is used in new research. Through the nature of science activities, students learn what science is, what the stages of scientific knowledge formation are and the fact that knowledge can change over time. They also gain the ability to solve problems in their daily lives (Kucuk, 2016; MEB, 2018).

At the same time, nature of science activities enable students to develop a scientific understanding in their academic lives and structure the nature of science in their minds. When the literature is examined, it is seen that the importance of nature of science activities in science classes is emphasized. In addition, nature of science activities enable the development of cognitive, affective, and psychomotor skills of students and provide opportunities for the development of 21st-century skills such as problem solving, analytical, creative, critical, versatile, innovative thinking, etc. (Keklik, 2019; Kesgin & Timur, 2020; Mihladiz & Dogan, 2017; Ozer, Dogan, Cakmakci, Irez & Yalaki, 2017; Ozcan & Tasar, 2018; Ozgisi, 2022; Prachagool, Nuangchalerm, 2019; Prima, Utari, Chandra, Hasanah & Rusdiana, 2018; Sade-Memisoglu, Ercelik, 2022; Saritas, 2020; Savas, 2020; Tasdere, 2018; Torres, & Vasconcelos, 2020; Yesiloglu, 2021; Yuksel, 2019).

STEM education, is an approach that deals with the fields of science, mathematics, engineering and technology in an integrated way by establishing interdisciplinary relationships (Buyruk & Korkmaz, 2016; Sahin, Ayar & Adiguzel 2014). STEM education aims to train students as individuals who understand the nature of science, think critically, creatively, analytically, solve problems (Baran, Canbazoglu-Bilici, Mesutoglu & Ocak, 2016; Buyruk & Korkmaz, 2016; Childress, 1996; Elliott, Oty, McArthur &Clarck, 2001; Göloglu-Demir, Tanik Onal & Onal,
Robotic coding refers to a technology that enables the creation of relevant devices by adapting electronic circuits to science subjects, the writing of software codes related to those circuits on the computer platform, the operation of the device, and thus makes difficult concepts more understandable. With the integration of robotic coding, students’ creativity, problem-solving, versatile thinking, analytical thinking, learning by doing, critical thinking, communication, collaborative learning, and decision-making skills are developed in science courses (Aris & Orcos, 2019; Arslan & Celik, 2022; Caliskan, 2020; Coskunserce, 2021; Demir-Kacan & Kacar, 2022; Guven, 2021; Guven, Kozcu-Cakir, Sulun, Cetin, Guven, 2022; Kozcu-Cakir & Guven, 2019; Tiryaki & Adiguzel, 2021; Yildiz & Seferoglu, 2021). Moreover, students’ success in the cognitive domain and their interest, attitude, and motivation towards the course have been observed to develop positively (Datteri, Zecca, Laudisa, Castiglioni, 2013; Guven et al., 2022; Kozcu-Cakir & Guven, 2019; Kozcu-Cakir & Yurdakul, 2021; Sullivan, 2008; Welch & Huffman, 2011). Thus, robotic coding applications can result in significant gains in science education. Therefore, it is necessary to provide students with robotic coding education (Hacioglu, Yamak & Kavak, 2016; Kozcu-Cakir & Guven, 2019). The reason for this may be that students take an active role during robotic coding applications, participate in the learning process by trial and error, and become curious and eager to learn as the lesson becomes fun. Also, robotic coding applications enable students to develop themselves by increasing their interest, attitude and motivation towards science, preparing them for scientific projects and helping them in their future career choices, while allowing the development of skills such as career development, marketing and entrepreneurship in students.

To ensure the development of technology and engineering design skills, it is important to integrate robotic coding applications into engineering design-based science education. Although there are not many studies in the literature on relevant applications, Yurttas (2021) examined the effect of engineering design-based robotic applications on students’ daily life-based problem-solving skills and found that students’ problem-solving skills improved, the relevant activities contributed positively to their daily lives, and they learned while having fun in class. In this regard, qualified teachers who will apply engineering design-based robotic coding applications are needed to contribute to effective learning of students.

Engineering design-based science education has been provided to science teachers within the scope of the project 2237 supported by TÜBİTAK. The goal of this project is to enable teachers to gain competence in applying the engineering design process, relating it to the nature of science, STEM, and robotic coding in their classrooms. In
the engineering design process, the nature of science, STEM and robotic coding applications are important for students to construct knowledge, and for learning in science to be more permanent. When the studies in the literature were examined, it was found that there were very few studies that combined robotic coding and the nature of science with the engineering design cycle, that very few studies were conducted on engineering design applications within the scope of science lessons and that the engineering design process was generally associated only with the STEM field. It is important for students to have interest, attitude, motivation, and self-efficacy towards the nature of science, STEM and robotic coding applications in the engineering design process, to construct scientific knowledge and to gain competence (Alayli, 2021; Balci, 2021; Balci & Korkmaz, 2020; Bicer, Uzoglu & Bozdogan, 2018; Bolukbasi, 2019; Erdemir-Yilmaz, 2021; Kurtulan, 2021; Ozkaya, Bulut & Sahin, 2022; Sahin & Korkmaz, 2020; Yaman, Ozdemir & Akar-Vural, 2018). To do so, it is necessary for teachers who will perform applications in these fields to have the required competence in these fields. Generally, teachers tend to participate in in-service training because they feel inadequate in practice (Bozkurt-Altan & Hacioglu, 2018; Hacioglu, 2016; Karakaya, Unal, Cimen & Yilmaz, 2018; Ozcan & Kostur, 2018). Thus, the purpose of the current study is to examine the effect of adapting the engineering design process to robotic coding, STEM and the nature of science applications on teachers’ self-efficacy towards engineering education and attitudes towards robotic coding.

The sub-problems related to this are given below:

- **Sub-Problem 1:** What is the effect of adapting the engineering design process to robotic coding, the nature of science and STEM applications on the self-efficacy of science teachers towards engineering education?
- **Sub-Problem 2:** Is there a difference in terms of the sub-factors of engineering teaching self-efficacy in adapting robotics coding, the nature of science, and STEM applications to the engineering design process?
- **Sub-Problem 3:** What is the effect of adapting the engineering design process to robotic coding, the nature of science and STEM applications on science teachers’ attitudes towards the use of robotic coding in the class?
- **Sub-Problem 4:** Is there a difference in the sub-factors of the in-class educational robotic coding attitude scale when adapting the engineering design process to robotic coding, the nature of science, and STEM applications?
- **Sub-Problem 5:** Is there a correlation between engineering education self-efficacy beliefs and attitudes towards the use of robotic coding in class?

Method

Research Design

In the current study, a single-group pretest-posttest experimental design was used as a quantitative research method. Experimental designs are conducted to reveal cause-effect relationships between variables (Buyukozturk, 2016). Pretest-posttest experimental design compares the pre and post states of single groups, where there is no selective assignment or matching (Fraenkel, Wallen, & Hyun, 2012). The design of the study is given in Table 1.
Table 1. Research Design

<table>
<thead>
<tr>
<th>Pre Test</th>
<th>Application</th>
<th>Post Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attitude Scale Toward</td>
<td>Engineering Design Process, Robotic Coding, STEM</td>
<td>Attitude Scale Toward</td>
</tr>
<tr>
<td>Educational Robotic</td>
<td>and the theoretical structure of the nature of</td>
<td>Educational Robotic Education</td>
</tr>
<tr>
<td>Education In-Class</td>
<td>science, class-specific application examples</td>
<td>In-Class</td>
</tr>
<tr>
<td>Teaching Engineering Self-</td>
<td>three areas in the engineering design process.</td>
<td>Teaching Engineering Self-</td>
</tr>
<tr>
<td>Efficacy Scale</td>
<td></td>
<td>Efficacy Scale</td>
</tr>
</tbody>
</table>

Population and Sample of the Study

The sample of this study consists of 20 science teachers from all over Turkey who meet the application requirements within the scope of the project 2237 supported by TÜBİTAK and are working in schools affiliated to the Ministry of National Education. Participants were determined using the purposive sampling method. The purposive sampling method is used for in-depth research by selecting situations that are appropriate for the purpose of the research and rich in information (Yildirim, 2010). The reason for using this method in this study is that it was conducted with teachers who met the participation requirements within the scope of the project and were selected by the researcher.

Data Collection Tools of the Study

In this study, the ‘Attitude Scale for In-Class Educational Robotics Applications’ developed by Balci and Korkmaz (2020) and the ‘Engineering Teaching Self-Efficacy Scale’ originally named ‘Teaching Engineering Self-Efficacy Scale (TESS)’ developed by Yoon, Evans & Strobel (2014) and adapted into Turkish by Erdemir-Yilmaz (2021) were used.

Attitude Scale for In-Class Educational Robotics Applications

Balci and Korkmaz (2020) developed a 5-point Likert scale (1-Strongly disagree, 2-Disagree, 3-Neutral, 4-Agree, 5-Strongly agree) consisting of 3 factors called willingness (20 items), collaboration and problem-solving (7 items) and negative attitude (5 items) and 32 items by conducting validity and reliability studies to determine the attitudes of teachers towards the educational use of robotic coding in the class. The Cronbach Alpha reliability coefficient (α) of the sub-factors of the scale are as follows: α=.762 for the willingness factor, α=.795 for the collaboration and problem-solving factor and α=.806 for the negative attitude factor. Additionally, the total Cronbach Alpha reliability coefficient of the scale is calculated as .735. Therefore, the scale, which is considered reliable and valid, is found to be suitable for use in this study.

Teaching Engineering Self-Efficacy Scale

The scale, originally named Teaching Engineering Self-Efficacy Scale (TESS), was developed by Yoon et al.
(2014) to determine teachers’ self-efficacy beliefs in engineering education. The scale was adapted into Turkish by Erdemir-Yilmaz (2021). The 6-point Likert-type scale adapted into Turkish by Erdemir-Yilmaz (2021) consists of 4 factors called Engineering Pedagogical Content Knowledge Self-Efficacy (EPCKS, 6 items), Engineering Discipline Self-Efficacy (EDS, 5 items), Engineering Participation Self-Efficacy (EPS, 4 items), and Engineering Outcome Expectancy Self-Efficacy (EOES, 5 items). The Cronbach Alpha reliability coefficients (α) of the sub-factors of the scale are as follows: α = .903 for Engineering Pedagogical Content Knowledge Self-Efficacy (EPCKS), α = .905 for Engineering Participation Self-Efficacy (EPS), α = .920 for Engineering Discipline Self-Efficacy (EDS), and α = .838 for Engineering Outcome Expectancy Self-Efficacy (EOES). The general Cronbach Alpha reliability coefficient of the Turkish version of the scale is α = .926. Therefore, the scale, which is considered valid and reliable, is suitable for use in the study.

Experimental Procedure

In this study, applications were conducted to show how to integrate the engineering design process to STEM, robotic coding, and the theoretical framework of the nature of science in classroom practices of 20 science teachers over a week. This training lasted a total of 36 hours. Throughout the training, the teachers actively participated in the given training and necessary guidance was provided. The content and schedule of the experimental procedure of the study is given in Table 2.

<table>
<thead>
<tr>
<th>Time</th>
<th>Content Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.00-12.45</td>
<td>Engineering Design Cycle</td>
</tr>
<tr>
<td>14.00-17.45</td>
<td>Coding Training: Scratch 3.0</td>
</tr>
<tr>
<td>2nd Day</td>
<td>Educational Robotics: Using Arduino</td>
</tr>
<tr>
<td></td>
<td>Engineering Design Cycle process in Science</td>
</tr>
<tr>
<td></td>
<td>Education: Robotic Coding Application</td>
</tr>
<tr>
<td>3rd Day</td>
<td>STEM Theoretical Structure</td>
</tr>
<tr>
<td></td>
<td>Engineering Design in STEM Education Based Applications</td>
</tr>
<tr>
<td>4th Day</td>
<td>Nature of Science Theoretical Structure</td>
</tr>
<tr>
<td></td>
<td>Engineering Design Cycle process in Science</td>
</tr>
<tr>
<td></td>
<td>Education: Nature of Science applications</td>
</tr>
<tr>
<td>5th Day</td>
<td>Robotic Coding, STEM and Nature of Science</td>
</tr>
<tr>
<td></td>
<td>National Competitions in The Engineering Design Cycle Process</td>
</tr>
</tbody>
</table>

Table 2. Experimental Procedure of the Study

On the first day of the training, theoretical framework of the engineering design cycle was provided to the teachers during the morning sessions, and practical examples for a specific purpose were demonstrated. The teachers worked in groups and created different designs using the same materials provided to each group for a self-selected engineering problem. In the afternoon, theoretical information about coding, specifically what coding is and how it is done, was given. The interfaces of mBlock programs that work with Scratch 3.0 and Arduino were introduced, and sample applications were demonstrated for a given scenario. During the morning sessions of the second day, the teachers were given theoretical knowledge about educational robotics, and the use of Arduino was discussed. The structure of Arduino, types of sensors, connection methods, and examples of how to code sensors to work in
the mBlock program were provided. In the afternoon, the engineering design cycle process in science education was discussed and activity examples on how robotics coding applications based on the engineering design process can be implemented in the classroom were demonstrated. On the third day, the theoretical framework of STEM education was provided in the morning sessions, followed by practical examples. In the afternoon, engineering design-based applications in STEM education continued. The fourth day focused on providing the theoretical framework of the nature of science, followed by practical applications. In the afternoon, applications related to the nature of science were carried out within the framework of the engineering design cycle. On the fifth day, during the morning sessions, discussions were held about robotics coding, STEM, and the nature of science within the engineering design cycle.

Analysis of the Data

In the study, quantitative data obtained from the attitude scale and the self-efficacy scale were analyzed with SPSS 23 program. First, analyses were made to determine whether the data were normally distributed and the normality assumption was found to be satisfied. Skewness and kurtosis coefficients were examined according to Tabachnick & Fidell (2013). After the normality assumption was satisfied, a dependent groups t-test was performed to determine whether there are significant differences between the pre-test and post-test scores taken from the whole scale and its sub-factors and a correlation analysis was performed to determine the relationship between the two scales.

Findings

In this section, findings related to the sub-problems of the study are presented along with their interpretations made on the basis of the analysis of the scores taken from the self-efficacy scale for engineering education and the robotics and coding attitude scale.

Findings Related to the First and Second Sub-Problems

The data obtained from the self-efficacy scale of engineering education applied to science teachers and its sub-factors before and after the adaptation of the engineering design process to robotic coding, the nature of science, and STEM applications were analyzed with a paired-samples t-test. The relevant findings are presented in Table 3.

Table 3. Paired-Simple t-Test Results for Engineering Teaching Self-Efficacy

<table>
<thead>
<tr>
<th>Sub-Factors</th>
<th>Pre-Test M</th>
<th>Pre-Test SD</th>
<th>Post-Test M</th>
<th>Post-Test SD</th>
<th>t(20)</th>
<th>p</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>91.45</td>
<td>11.01</td>
<td>104.00</td>
<td>10.51</td>
<td>-3.17</td>
<td>.005</td>
<td>0.71</td>
</tr>
<tr>
<td>PCKS</td>
<td>25.65</td>
<td>4.09</td>
<td>31.65</td>
<td>4.03</td>
<td>-4.31</td>
<td>.000</td>
<td>0.96</td>
</tr>
<tr>
<td>EDS</td>
<td>24.05</td>
<td>3.39</td>
<td>26.95</td>
<td>2.80</td>
<td>-2.57</td>
<td>.019</td>
<td>0.57</td>
</tr>
<tr>
<td>EPS</td>
<td>19.80</td>
<td>2.50</td>
<td>20.90</td>
<td>2.43</td>
<td>-1.38</td>
<td>.184</td>
<td>0.31</td>
</tr>
<tr>
<td>EOES</td>
<td>21.95</td>
<td>3.41</td>
<td>24.50</td>
<td>3.49</td>
<td>-2.12</td>
<td>.048</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Table 3 shows whether the pre-test and post-test self-efficacy scores of the science teachers in engineering education taken from the whole scale and its sub-factors vary significantly. It is seen that the Total [t(20) = -3.17, p<0.05], EPCKS [t(20) = -4.31, p<0.05], MDÖ [t(20) = -2.57, p<0.05] and EOES [t(31) = -2.12, p<0.05] scores show a statistically significant difference while the EPS [t(20) = -1.38, p>0.05] score does not show a significant difference. However, when the means are examined, it is seen that the teachers have improved in the EPS (20.90) sub-factor. The effect size refers to the standard value that shows the magnitude of the effect of the independent variable on the dependent variable. Reference intervals are named as small effect size for d = 0.20, medium effect size for d = 0.50, and large effect size for d = 0.80 by Cohen (1962). Accordingly, when the effect value is examined in the above table, the EPCKS sub-factor has a large effect value; the EDS sub-factor and the total scale have a medium effect value; and the EOES sub-factor has a low effect value.

Findings Related to the Third and Fourth Sub-Problems

The pre-test and post-test scores taken from the attitude scale and its sub-factors by the science teachers were analyzed by using the dependent samples t-test. The relevant findings are presented in Table 4.

<table>
<thead>
<tr>
<th>Sub-Factors</th>
<th>Pre-Test M</th>
<th>SD</th>
<th>Post-Test M</th>
<th>SD</th>
<th>t(20)</th>
<th>p</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Willingness</td>
<td>78.05</td>
<td>9.55</td>
<td>88.45</td>
<td>10.09</td>
<td>-4.73</td>
<td>.000</td>
<td>1.06</td>
</tr>
<tr>
<td>Collaboration and Problem-solving</td>
<td>29.40</td>
<td>3.87</td>
<td>30.90</td>
<td>3.89</td>
<td>-1.47</td>
<td>.158</td>
<td>0.33</td>
</tr>
<tr>
<td>Negative Attitude</td>
<td>21.35</td>
<td>4.32</td>
<td>22.45</td>
<td>3.46</td>
<td>-0.96</td>
<td>.349</td>
<td>0.21</td>
</tr>
<tr>
<td>Total</td>
<td>128.80</td>
<td>14.98</td>
<td>141.80</td>
<td>15.46</td>
<td>-3.46</td>
<td>.003</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Table 4 shows whether the pre-test and post-test attitude scores taken by the science teachers from the whole scale and its sub-factors vary significantly. It is seen that the willingness [t(20) = -4.73, p<0.05] and the total [t(20) = -3.46, p<0.05] scores show a significant difference while the collaboration and problem-solving [t(20) = -1.47, p>0.05] and negative attitude [t(20) = -0.96, p>0.05] scores do not show a significant difference. However, although the means in these sub-factors of collaboration and problem-solving do not show a significant difference, the teachers have improved in these sub-factors.

The effect size, which shows the magnitude of the effect of the independent variable on the dependent variable, is called the effect size of the standard value. Reference intervals are named as small effect size for d = 0.20, medium effect size for d = 0.50, and large effect size for d = 0.80 by Cohen (1962). Accordingly, when the effect value in the above table is examined, it is determined that the willingness sub-factor has a large effect value and the total scale has a medium effect value.

Findings Regarding the Fifth Sub-Problem

Correlation analysis was conducted to determine the relationship between engineering teaching self-efficacy
beliefs and attitudes towards in-class educational robotic coding after the engineering design-based robotic coding in education, STEM, and the nature of science applications. The findings of the correlation analysis are presented in Table 5.

Table 5. Results of the Correlation Analysis between Engineering Education Self-Efficacy and Attitude towards Robotic Coding

<table>
<thead>
<tr>
<th>Engineering Teaching Self-Efficacy</th>
<th>Pearson Correlation</th>
<th>Sig. (2-tailed)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotic Coding</td>
<td>.521†</td>
<td>.019</td>
<td>20</td>
</tr>
</tbody>
</table>

When Table 5 is examined, a positive and moderate relationship is seen between the self-efficacy of science teachers in engineering education and their attitudes towards robotic coding at the .05 significance level ($r = .521$, $p = .019$). Considering the coefficient of determination ($r^2 = 0.27$), it can be said that 27% of the total variance in attitudes towards robotic coding applications is due to self-efficacy in engineering education.

Discussion and Conclusion

In the current study, the findings obtained from examining teachers' self-efficacy towards engineering education indicate that their indicate self-efficacy beliefs in their engineering teaching skills increased significantly in the sub-factor, EPCKS. It was observed that the EPCKS sub-factor has a large effect value. It is thought that this increase in belief may be attributed to teachers' growing confidence in conducting engineering design-based activities in their classes (Hacioğlu, Yamak & Kavak, 2016; Sari & Yazici, 2019). In addition, research in the literature emphasizes the significant role of teachers' self-efficacy perceptions on students' learning success (Moore & Esselman, 1992, 1994). In the second sub-factor, EDS sub-factor, it was determined that teachers' beliefs in coping with different student behaviors while applying engineering practices in their classes increased, and it was concluded that the EDS sub-factor had a medium effect value. It can be thought that teachers' beliefs in their self-efficacy of guiding students correctly have increased by thinking about which problems they encounter at each stage by experiencing the engineering design process during the practices (Sari & Yazici, 2019).

In the third sub-factor, EOES sub-factor, it was concluded that teachers' beliefs about the impact of students on engineering learning were low and the EOES sub-factor had a low effect value. This may be due to the fact that teachers' beliefs in the effectiveness of engineering practices are low because they are new to engineering practices (Sari & Yazici, 2019). In research conducted on the EPS sub-factor, it was observed that teachers have low beliefs in capturing students' interest while teaching engineering subjects, and no significant difference was detected in this regard. The study conducted by Hacioglu, Yamak, and Kavak (2016) sheds important light on this issue. The difficulties teachers face in attracting interest during the process of teaching engineering are generally associated with the process of familiarizing themselves with engineering disciplines. Teachers who do not receive comprehensive training and support may encounter difficulties in capturing students' interest.

Teachers' self-efficacy towards engineering education is crucial for increasing students’ engineering self-efficacy through engineering design activities in their classrooms. It is also likely that students’ self-efficacy towards
science learning will increase as their engineering self-efficacy increases. When the literature is examined, it is seen that studies that use the engineering design process in science education and discuss its effect on teachers are also available. In Erdemir-Yilmaz’s (2021) study, which used the self-efficacy scale for engineering education, the engineering teaching self-efficacy beliefs of science teachers (science, physics, chemistry, biology) working in middle and high schools were examined in terms of different variables (gender, engineering education they have received, engineering teaching experience, branch, school type, location of the school, years of teaching experience and age). The research determined that the engineering teaching self-efficacy beliefs of science teachers varied significantly depending on the variables of receiving engineering education and engineering teaching experience. When other studies in the literature related to the use of the engineering design process in science education are examined, it is generally seen that positive perceptions have been expressed (Capobianco, 2011; Cuijck, Keulen & Jochems, 2009; Hacioglu, Yamak & Kavak, 2016; Sari & Yazici, 2019).

On the other hand, teachers have concerns about applying the engineering design process in their classrooms. Therefore, they have stated that they stay away from such applications (Capobianco, 2011; Cuijck, Keulen & Jochems, 2009; Hacioglu, Yamak & Kavak, 2016; Sari & Yazici, 2019). These studies show that teachers’ self-efficacy is low in using the engineering design process. In the current study, the trainings given to the teachers were found to have increased the teachers’ self-efficacy and their desire to use such applications in their classes. Therefore, it can be suggested that in-service trainings should be given to teachers more for the integration of such applications into science topics in classroom environments.

When the attitudes of teachers towards in-class educational robotic education applications are examined, it has been determined that the attitudes of teachers towards applications related to robotic coding have increased in the first sub-factor, willingness sub-factor, and the willingness sub-factor has been found to have a high effect value. This may be due to their finding robotic activities different (Altun-Yalcın, Kahraman & Yılmazturk, 2020; Coskunserce, 2021). In the second sub-factor, collaboration-problem-solving sub-factor, it was found that teachers’ attitudes towards using problem-solving skills to ensure collaboration among groups were low, and no statistical difference was detected. This may be due to the fact that inter-group collaboration cannot be fully achieved during group-based robotic coding applications (Balci & Korkmaz, 2020). In addition, it is thought that there is no difference in the collaboration-problem-solving sub-factor because some teachers are not familiar with robotic coding applications and it is a new area they have learned. No difference was observed in the third sub-factor, negative attitude sub-factor. It can be thought that teachers in general do not have negative attitudes towards the activities. Although there was no difference in the collaboration-problem-solving sub-factor, the post-test scores are higher than the pre-test scores.

When the total score taken from the scale is examined, a significant difference was detected and the effect size of the difference was found to be medium. As a result, it can be argued that the teachers understood that robotic coding applications would help to overcome difficulties in science classes. Also, the reason for these results may be to the provision of a learning environment allowing learning by doing and experiencing, using 21st-century skills, arousing curiosity, fostering enthusiastic participation in activities, using research and inquiry skills, problem-solving, analytical thinking, algorithmic thinking skills. When the relevant literature is examined, it is
seen that there are studies showing that teachers’ attitudes towards in-class educational robotic education applications have developed positively (Kilinc, 2014; Okkesim, 2014), and that the applications have a positive effect on students’ attitudes towards robotic coding (Akdogan, 2020; Altun-Yalcin, Kahraman & Yilmazturk, 2020; Balci & Korkmaz, 2020; Guven, 2021; Kasalak, 2017; Sayin, 2020; Sisman & Kucuk, 2018; Yilmazturk, 2020) and science lessons (Balci & Korkmaz, 2020; Guven, 2021; Yilmazturk, 2020). There are also studies that show that robotic coding applications increase students’ interest and motivation (Altun-Yalcin, Kahraman & Yilmazturk, 2020; Guven, 2021; Sisman & Kucuk, 2018).

When the relationship between the self-efficacy scale of engineering education and the attitude scale for in-class educational robotics training applications was examined, a positive and medium correlation was found. Robotic coding applications were carried out in line with the engineering design process. It is believed that the teachers were successful in robotic coding applications due to the increase in their confidence in engineering education. Teachers successfully improved the robotic coding applications and carried out the process of creating their own designs for an engineering problem in light of the knowledge and experience they had gained about the engineering design process. Thus, their attitudes towards robotic coding developed positively. In their study, Kaloti-Hallak, Armony and Ben-Ari (2019) observed that students learned the engineering design process meaningfully during their participation in robotic activities. This study supports the current study demonstrating that robotic coding applications are effective in learning the engineering design process. In the study by Yurttas (2021) on group engineering design-based robotic applications with students, it was concluded that students’ problem-solving skills improved, and their attitudes and motivations towards robotic coding also improved. Erdem (2019) concluded that teachers’ interest in robotic coding increased, engineers’ perceptions of their duties changed, and they gained self-confidence. In the study conducted by Tatlisu (2020) on the effect of problem-based learning on primary school students’ problem-solving skills in educational robotics applications, it was concluded that educational robotic coding applications carried out on the basis of engineering design cycle had a great impact on students.

Self-efficacy and attitude are important variables for the effectiveness of science teaching. Menon and Azam (2021) determined the effect of self-efficacy beliefs on science teaching in their study with pre-service science teachers and concluded that self-efficacy plays a significant role in science teaching. In summary, teachers should have self-efficacy and attitudes towards engineering design-based STEM, robotic coding, and nature of science practices to offer an effective science teaching to their students.

In the current study, the teachers understood that the applications they learned would be useful in their lessons and gained the ability to guide their students well. As a result, this study can help teachers in training their students more effectively. Engineering design-based robotic coding, the nature of science, and STEM activities in science education are very important. In order to conduct such activities effectively in science classes, there is a need for qualified teachers. For teachers to be able to successfully implement such activities in their classrooms, their attitudes and self-efficacy should be high. In this study conducted on teachers, it was found that engineering design-based robotic coding, the nature of science, and STEM activities contributed to increasing teachers’ awareness, self-efficacy, and attitudes towards these areas.
Recommendations

In light of the findings of the study, following recommendations can be made:

- In addition to the engineering teaching self-efficacy scale and the attitude scale towards robotic coding, a scale related to the nature of science and STEM can be used in further studies,
- Quantitative data can be supported with quantitative data in further studies,
- Conducting studies that have a clear theme of STEM, robotic coding, and the nature of science in engineering design can offer teachers the opportunity to guide these practices in their classrooms,
- In-service training can be provided to teachers for the effective use of the engineering design process.

References

215.

Boriack, A. C. (2013). Teachers’ perceptions of effective science, technology, and mathematics professional development and changes in classroom practices. Texas A&M University..

Ercan, S., & Sahin F. (2015). Use of Engineering Applications in Science Education: The Effect of Design-Based Science Education on Students’ Academic Achievement. Necatibey Faculty of Education Electronic

Gunes-Koc, R. S., & Kayacan, K. (2018). Determining the opinions of science teachers regarding the engineering and design skills included in the 2018 science curriculum. Turkish Studies Educational Sciences, 13(19), 865-881. http://dx.doi.org/10.7827/TurkishStudies.13771

Kucuk, A. (2016). *The effect of teaching the nature of science within and outside the Light subject area on 5th grade students' understanding of the nature of science.* (Unpublished master's thesis). Recep Tayyip Erdoğan University.

Musaoglu, G. (2020). *Examination of seventh grade students' engineering design levels and product promotion qualities regarding space pollution in science course.* (Unpublished master's thesis). Recep Tayyip Erdoğan University.

Author Information

Nevin Kozcu Cakir

https://orcid.org/0000-0002-7538-7882

Mugla Sıtkı Kocman University

Kotekli/ Mentese/ Mugla

Turkey

Suna Karlidag

https://orcid.org/0000-0001-7269-0619

Mugla Sıtkı Kocman University

Kotekli/ Mentese/ Mugla

Turkey

Contact e-mail: sunakarlidag110@gmail.com